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Abstract. This paper presents a few preconditioning techniques for solving general sparse linear
systems on distributed memory environments. These techniques utilize the Schur complement system
for deriving the preconditioning matrix in a number of ways. Two of these preconditioners consist of
an approximate solution process for the global system, which exploits approximate LU factorizations
for diagonal blocks of the Schur complement. Another preconditioner uses a sparse approximate-
inverse technique to obtain certain local approximations of the Schur complement. Comparisons are
reported for systems of varying difficulty.
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1. Introduction. The successful solution of many “grand challenge” problems
in scientific computing depends largely on the availability of adequate large sparse
linear system solvers. In this context, iterative solution techniques are becoming a
mandatory replacement for direct solvers due to their more moderate computational
and storage demands. A typical grand challenge application requires the use of pow-
erful parallel computing platforms along with parallel solution algorithms to run on
these platforms. In distributed memory environments, iterative methods are relatively
easy to implement compared with direct solvers, and so they are often preferred in
spite of their unpredictable performance for certain types of problems.

However, users of iterative methods do face a number of issues that do not arise
in direct solution methods. In particular, it is not easy to predict how fast a linear
system can be solved to a certain accuracy or whether it can be solved at all by certain
types of iterative solvers. This depends on the algebraic properties of the matrix, such
as the condition number and the clustering of the spectrum.

With a good preconditioner, the total number of steps required for convergence
can be reduced dramatically, at the cost of a slight increase in the number of opera-
tions per step, resulting in much more efficient algorithms in general. In distributed
environments, an additional benefit of preconditioning is that it reduces the parallel
overhead, and therefore it decreases the total parallel execution time. The parallel
overhead is the time spent by a parallel algorithm in performing communication tasks
or in idling due to synchronization requirements. The algorithm will be efficient if
the construction and the application of the preconditioning operation both have a
small parallel overhead. A parallel preconditioner may be developed in two distinct
ways: by extracting parallelism from efficient sequential techniques or by designing
a preconditioner from the start, specifically for parallel platforms. Each of these two
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approaches has its advantages and disadvantages. In the first approach, the precon-
ditioners yield the same good convergence properties as those of a sequential method
but often have a low degree of parallelism, leading to inefficient parallel implemen-
tations. In contrast, the second approach usually yields preconditioners that enjoy a
higher degree of parallelism but that may have inferior convergence properties.

This paper mainly addresses the issue of developing preconditioners for distributed
sparse linear systems by regarding these systems as distributed objects. This view-
point is common in the framework of parallel iterative solution techniques [22, 19,
26, 14, 31, 1, 10] and borrows ideas from domain decomposition methods that are
prevalent in the PDE literature. The key issue is to develop preconditioners for the
global linear system by exploiting its distributed data structure. Recently, a number
of methods have been developed which exploit the Schur complement system related
to interface variables; see for example [17, 1, 10]. In particular, several distributed
preconditioners included in the ParPre package [10] employ variants of Schur comple-
ment techniques. One difference between our work and [1] is that our approach does
not construct a matrix to approximate the global Schur complement. Instead, the pre-
conditioners constructed are entirely local. However, they also have a global nature
in that they do attempt to solve the global Schur complement system approximately
by an iterative technique.

The paper is organized as follows. Section 2 gives a background regarding dis-
tributed representations of sparse linear systems. Section 3 starts with a general de-
scription of the class of domain decomposition methods known as Schur complement
techniques. This section also presents several distributed preconditioners that are de-
fined via various approximations to the Schur complement. The numerical experiment
section (section 4) contains a comparison of these preconditioners for solving various
distributed linear systems. Finally, a few concluding remarks are made in section 5.

2. Distributed sparse linear systems. Consider a linear system of the form

Ax = b,(2.1)

where A is a large sparse nonsymmetric real matrix of size n. Often, to solve such
a system on a distributed memory computer, a graph partitioner is first invoked to
partition the adjacency graph of A. A number of graph partitioners are available and
several packages can be readily obtained [21, 12, 15]. Based on the resulting partition-
ing, the data is distributed to processors such that pairs of equations-unknowns are
assigned to the same processor. Thus each processor holds a set of equations (rows of
the linear system) and vector components associated with these rows.

A good distributed data structure is crucial for the development of effective sparse
iterative solvers. It is important, for example, to have a convenient representation of
the local equations as well as the dependencies between the local and external vector
components. A preprocessing phase is thus required to determine these dependencies
and any other information needed during the iteration phase. The approach described
here follows the one used in the PSPARSLIB package; see [26, 29, 19] for additional
details.

2.1. Background and notation. Figure 2.1 shows a “physical domain” view-
point of a sparse linear system. This representation borrows from the domain decom-
position literature. Thus the term “subdomain” is often used here instead of the more
proper term “subgraph.” Note that the concepts of a subdomain and a “point” are
defined algebraically and do not necessarily have direct geometrical representations.
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Fig. 2.1. A local view of a distributed sparse matrix.
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Fig. 2.2. A partitioned sparse matrix and vector.

Each point (node) belonging to a subdomain is actually a pair representing an equa-
tion and an associated unknown. It is common to distinguish between three types of
unknowns: (1) interior unknowns that are coupled only with local equations; (2) local
interface unknowns that are coupled with both nonlocal (external) and local equa-
tions; and (3) external interface unknowns that belong to other subdomains and are
coupled with local equations. The matrix in Figure 2.2 can be viewed as a reordered
version of the equations associated with a local numbering of the equation-unknown
pairs. Note that local equations do not necessarily correspond to contiguous equations
in the original system.

In Figure 2.2, the rows of the matrix assigned to a certain processor have been split
into two parts: the local matrix Ai, which acts on the local vector components, and
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the rectangular interface matrix Xi, which acts on the external vector components.
Accordingly, the local equations can be written as follows:

Aixi + Xiyi,ext = bi,(2.2)

where xi is the vector of local unknowns, yi,ext are the external interface variables,
and bi is the local part of the right-hand side vector. Similarly, a (global) matrix-
vector product Ax can be performed in three steps. First, multiply the local vector
components xi by Ai, then receive the external interface vector components yi,ext
from other processors, and finally multiply the received data by Xi and add the result
to that already obtained with Ai.

The preprocessing phase should construct a data structure for representing the
matrices Ai and Xi. It should also form any additional data structures required to
prepare for the intensive communication that takes place during the iteration phase.
In particular, each processor needs to know (1) the processors with which it must
communicate, (2) the list of interface points, and (3) a break-up of this list into sub-
lists that must be communicated among neighboring processors. For further details
see [26, 29, 19]. An important feature of the data structure used is the separation
of the interface points from the interior points. In each processor, local points are
ordered such that the interface points are listed last after the interior points. Such
ordering of the local data presents several advantages, including more efficient inter-
processor communication, and reduced local indirect addressing during matrix-vector
multiplication.

With this local ordering, each local vector of unknowns xi is split into two parts:
the subvector ui of internal vector components followed by the subvector yi of local
interface vector components. The right-hand side bi is conformally split into the
subvectors fi and gi, i.e.,

xi =

(

ui

yi

)

; bi =

(

fi
gi

)

.

When block partitioned according to this splitting, the local matrix Ai residing in
processor i has the form

Ai =









Bi Fi

Ei Ci









,(2.3)

so the local equations (2.2) can be written as follows:
(

Bi Fi

Ei Ci

)(

ui

yi

)

+

(

0
∑

j∈Ni
Eijyj

)

=

(

fi
gi

)

.(2.4)

Here, Ni is the set of indices for subdomains that are neighbors to the subdomain i.
The term Eijyj is a part of the product Xiyi,ext which reflects the contribution to the
local equation from the neighboring subdomain j. The sum of these contributions is
the result of multiplying Xi by the external interface unknowns

∑

j∈Ni

Eijyj ≡ Xiyi,ext.

It is clear that the result of this multiplication affects only the local interface un-
knowns, which is indicated by zero in the top part of the second term of the left-hand
side of (2.4).
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(a) (b) 

Fig. 2.3. (a) Partition of a domain into two nonoverlapping subdomains. (b) Resulting over-
lapping partition after one level expansion.

2.2. Distributed additive Schwarz preconditioning. Figure 2.1 can be used
again to illustrate a framework for preconditioning construction based on domain
decomposition techniques, the simplest of which is the additive Schwarz procedure.
This form of a block Jacobi iteration, in which blocks refer to the systems associated
with entire domains, is sketched next.

Algorithm 2.1. Block Jacobi iteration (additive Schwarz).
1. Obtain external data yi,ext.
2. Compute (update) local residual ri = (b−Ax)i = bi −Aixi −Xiyi,ext.
3. Solve Aiδi = ri.
4. Update solution xi = xi + δi.

Observe that the required communication, as well as the overall structure of the
routine, is identical to that of a matrix-vector multiplication.

Of particular interest are the overlapping Jacobi methods. In the domain decom-
position literature [3, 4, 5, 11] overlapping is used as a strategy for improving the
convergence rate. In this paper, we consider mainly one-level overlapping: after an
initial (nonoverlapping) partitioning, each subgraph is expanded by one level and the
additional level-set is added to this initial subdomain. Figure 2.3 provides an illustra-
tion for this one-level overlapping. The data in the overlapping subregion will have
two versions, each residing in one of the processors involved. When exchanging data
during the iteration phase, we can either (1) replace the local version of the data by its
external version or (2) replace it by some average. Note that for illustration purposes
we used two subdomains, but in the overlapping case, it is common that a given data
is assigned to more than two processors, so several different versions of the data have
to be averaged in some way. Our experience is that the distinction between these dif-
ferent implementations of overlapping is rather minimal [18]. It is easy to generalize
the one-level overlapping described above to overlappings that involve expansions by
more than several levels.

3. Derivation of Schur complement techniques. Schur complement tech-
niques refer to the methods which iterate on the interface unknowns only, implicitly
using internal unknowns as intermediate variables. A few strategies for deriving Schur
complement techniques will now be described. First, the Schur complement system
is derived.

3.1. Schur complement system. Consider (2.2) and its block form (2.4).
Schur complement systems are derived by eliminating the variable ui from the system
(2.4). Extracting from the first equation ui = B−1

i (fi−Fiyi) yields, upon substitution
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in the second equation,

Siyi +
∑

j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i,(3.1)

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi.(3.2)

The equations (3.1) for all subdomains i (i = 1, . . . , p) constitute a system of
equations involving only the interface unknown vectors yi. This reduced system has
a natural block structure related to the interface points in each subdomain:









S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...
Ep1 Ep−1,2 . . . Sp

















y1

y2
...
yp









=









g′1
g′2
...
g′p









.(3.3)

The diagonal blocks in this system, the matrices Si, are dense in general. The off-
diagonal blocks Eij , which are identical with those involved in the system (2.4), are
sparse.

The system (3.3) can be written as

Sy = g′,

where y = (y1, . . . , yp)
T is the vector of all the interface variables and g′ =

(g′1, . . . , g
′
p)

T is the right-hand side vector. Throughout the paper, we will abuse
the notation slightly for the transpose operation, by defining

(y1, . . . , yp)
T ≡









y1

y2
...
yp









rather than the actual transpose of the matrix with column vectors yj , j = 1, . . . , p.
The matrix S is the “global” Schur complement matrix, which will be exploited in
section 3.3.

3.2. Schur complement iterations. One of the simplest ideas that comes
to mind for solving the Schur complement system (3.3) is to use a block-relaxation
method associated with the blocking of the system. Once the Schur complement sys-
tem is solved the interface variables are available and the other variables are obtained
by solving local systems. As is known, with a consistent choice of the initial guess,
a block-Jacobi (or SOR) iteration with the reduced system is equivalent to a block-
Jacobi iteration (SOR, respectively) on the global system (see, e.g., [16, 25]). The kth
step of a block-Jacobi iteration on the global system takes the following local form:

x
(k+1)
i = x

(k)
i + A−1

i r
(k)
i

= x
(k)
i + A−1

i

(

bi −Aix
(k)
i −

(

0
∑

j∈Ni
Eijy

(k)
j

))

= A−1
i

(

fi
gi −

∑

j∈Ni
Eijy

(k)
j

)

=

(

∗ ∗
−S−1

i EiB
−1
i S−1

i

)(

fi
gi −

∑

j∈Ni
Eijy

(k)
j

)

.(3.4)
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Here, an asterisk denotes a nonzero block whose actual expression is unimportant.
A worthwhile observation is that the iterates with interface unknowns y satisfy an
independent relation

y
(k+1)
i = S−1

i



gi − EiB
−1
i fi −

∑

j∈Ni

Eijy
(k)
j



(3.5)

or equivalently

y
(k+1)
i = y

(k)
i + S−1

i



g′i − Siy
(k)
i −

∑

j∈Ni

Eijy
(k)
j



 ,(3.6)

which is nothing but a Jacobi iteration on the Schur complement system (3.3).
From a global viewpoint, a primary iteration for the global unknowns is

x(k+1) = Mx(k) + c.(3.7)

As was explained above, the vectors of interface unknowns y associated with the
primary iteration satisfy an iteration (called a Schur complement iteration)

y(k+1) = Gy(k) + h.(3.8)

The matrix G is not known explicitly, but it is easy to advance the above iteration
by one step from an arbitrary (starting) vector v, meaning that it is easy to compute
Gv + h for any v. This viewpoint was taken in [18, 17].

The sequence y(k) can be accelerated with a Krylov subspace algorithm, such
as GMRES [27]. One way to look at this acceleration procedure is to consider the
solution of the system

(I −G)y = h.(3.9)

The right-hand side h can be obtained from one step of the iteration (3.8), computed
for the initial vector 0, i.e.,

h = (G× 0 + h).

Given the initial guess y(0), the initial residual s(0) = h− (I −G)y(0) can be obtained
from

s(0) = h− (y(0) −Gy(0)) = y(1) − y(0).

Matrix-vector products with I − G can be obtained from one step of the primary
iteration. To compute w = (I −G)y, proceed as follows:

(1) Perform one step of the primary iteration
(

u′

y′

)

= M
(

0
y

)

+ c;

(2) Set w := y′;
(3) Compute w := y − w + h.

The presented global viewpoint shows that a Schur complement technique can
be derived for any primary fixed-point iteration on the global unknowns. Among the
possible choices of the primary iteration there are Jacobi and SOR iterations as well
as iterations derived (somewhat artificially) from ILU preconditioning techniques.
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The main disadvantage of solving the Schur complement system is that the solve
for the system Biδ = γ (needed to operate with the matrix Si) should be accurate.
We can compute the dense matrix Si explicitly or solve system (3.1) by using a
computation of the matrix-vector product Siy, which can be carried out with three
sparse matrix-vector multiplies and one accurate linear system solve. As is known
(see [30]), because of the large computational expense of these accurate solves, the
resulting decrease in iteration counts is not sufficient to make the Schur complement
iteration competitive. Numerical experiments will confirm this.

3.3. Induced preconditioners. A key idea in domain decomposition methods
is to develop preconditioners for the global system (2.1) by exploiting methods that ap-

proximately solve the reduced system (3.3). These techniques, termed “induced precon-
ditioners” (see, e.g., [25]), can best be explained by considering a reordered version of
the global system (2.1) in which all the internal vector components u = (u1, . . . , up)

T

are labeled first, followed by all the interface vector components y. Such reordering
leads to a block system















B1 F1

B2 F2

. . .
...

Bp Fp

E1 E2 · · · Ep C





























u1

u2

...
up

y















=















f1

f2

...
fp
g















,(3.10)

which also can be rewritten as
(

B F
E C

)(

u
y

)

=

(

f
g

)

.(3.11)

Note that the B block acts on the interior unknowns. Eliminating these unknowns
from the system leads to the Schur complement system (3.3).

Induced preconditioners for the global system can be obtained by exploiting a
block LU factorization for A. Consider the factorization

(

B F
E C

)

=

(

B 0
E S

) (

I B−1F
0 I

)

,(3.12)

where S is the global Schur complement

S = C − EB−1F.

This Schur complement matrix is identical to the coefficient matrix of system (3.3)
(see, e.g., [25]).

The global system (3.11) can be preconditioned by an approximate LU factoriza-
tion constructed such that

L =

(

B 0
E MS

)

and U =

(

I B−1F
0 I

)

(3.13)

with MS being some approximation to S.
Two techniques of this type are discussed in the rest of this section. The first one

exploits the relation between an LU factorization and the Schur complement matrix,
and the second uses approximate-inverse techniques to obtain approximations to the
local Schur complements.
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3.4. Approximate Schur LU preconditioner. The idea outlined in the pre-
vious subsection is that, if an approximation S̃ to the Schur complement S is available,
then an approximate solve with the whole matrix A for all the global unknowns can
be obtained, which will require (approximate or exact) solves with S̃ and B. It is
also possible to think locally in order to act globally. Consider (2.4) and (3.1). As is
readily seen from (2.4), once approximations to all the components of the interface
unknowns yi are available, corresponding approximations to the internal components
ui can be immediately obtained from solving

Biui = fi − Fiyi

with the matrix Bi in each processor. In practice, it is often simpler to solve a slightly
larger system obtained from (2.2) or

Aixi = bi −Xiyi,ext(3.14)

because of the availability of the specific local data structure.
Now return to the problem of finding approximate solutions to the Schur un-

knowns. For convenience, (3.1) is rewritten as a preconditioned system with the
diagonal blocks:

yi + S−1
i

∑

j∈Ni

Eijyj = S−1
i

[

gi − EiB
−1
i fi

]

.(3.15)

Note that this is simply a block-Jacobi preconditioned Schur complement system.
System (3.15) may be solved by a GMRES-like accelerator, requiring a solve with Si

at each step. There are at least three options for carrying out this solve with Si:
(1) Compute each Si exactly in the form of an LU factorization. As will be seen

shortly, this representation can be obtained directly from an LU factorization
of Ai.

(2) Use an approximate LU factorization for Si, which is obtained from an ap-
proximate LU factorization for Ai.

(3) Obtain an approximation to Si using approximate-inverse techniques (see the
next subsection) and then factor it using an ILU technique.

The methods in options (1) and (2) are based on the following observation (see
[25]). Let Ai have the form (2.3) and be factored as Ai = LiUi, where

Li =

(

LBi
0

EiU
−1
Bi

LSi

)

and Ui =

(

UBi
L−1
Bi

Fi

0 USi

)

.

Then, a rather useful result is that LSi
USi

is equal to the Schur complement Si associ-
ated with the partitioning (2.3). This result can be easily established by “transferring”
the matrices UBi

and USi
from the U-matrix to the L-matrix in the factorization:

Ai =

(

LBi
0

EiU
−1
Bi

LSi

) (

UBi
L−1
Bi

Fi

0 USi

)

=

(

LBi
UBi

0
Ei LSi

USi

) (

I U−1
Bi

L−1
Bi

Fi

0 I

)

=

(

Bi 0
Ei LSi

USi

) (

I B−1
i Fi

0 I

)

,

from which the result Si = LSi
USi

follows by comparison with (3.12).
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When an approximate factorization to Ai is available, an approximate LU factor-
ization to Si can be obtained canonically by extracting the related parts from the Li

and Ui matrices. In other words, an ILU factorization for the Schur complement is

the trace of the global ILU factorization on the unknowns associated with the Schur

complement. For a local Schur complement, the ILU factorization obtained in this
manner leads to an approximation S̃i of the local Schur complement Si. Instead of
the exact Schur complement system (3.1), or equivalently (3.15), the following ap-
proximate (local) Schur complement system derived from (3.15) can be considered on
each processor i:

yi + S̃−1
i

∑

j∈Ni

Eijyj = S̃−1
i

[

gi − EiB
−1
i fi

]

.(3.16)

The global system related to (3.16) can be solved by a Krylov subspace method, e.g.,
GMRES. The matrix-vector operation associated with this solve involves a certain
matrix MS (cf. (3.13)). The global preconditioner (3.13) can then be defined from
MS .

Given a local ILU factorization

Ai = LiUi + Ri,

with which the factorization

Si = LSi
USi

+ RSi

is associated, the following algorithm applies, in each processor, the global approx-
imate Schur LU preconditioner to a block vector (fi, gi)

T to obtain the solution
(ui, yi)

T . The algorithm uses m iterations of GMRES without restarting to solve
the local part of the Schur complement system (3.16). Then, the interior vector com-
ponents are calculated using (3.14) (lines 21–25). In the description of Algorithm 3.1,
P represents the projector that maps the whole block vector (fi, gi)

T into the sub-
vector gi associated with the interface variables.

Algorithm 3.1. Approximate Schur-LU solution step.

1. Given: local right-hand side rhs =
(

fi
gi

)

2. Define an (m + 1) ×m matrix H̄m and set H̄m := 0.
3. Arnoldi process:

4. yi := 0
5. r := (LiUi)

−1rhs
6. v1 := Pr/‖Pr‖2

7. For j = 1, ...,m do

8. Exchange interface vector components yi
9. t := (LSi

USi
)−1Xiyi,ext

10. w := vj + t
11. For l = 1, . . . , j Do:

12. hl,j := (w, vl)
13. w := w − hl,jvl
14. EndDo

15. hj+1,j := ‖w‖2 and vj+1 := w/hj+1,j

16. EndDo

17. Define Vm := [v1, ...., vm].
18. Form the approximate solution for interface variables:
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19. Compute yi := yi + Vmzm, where

20. zm = argminz‖βe1 − H̄mz‖2 and e1 = [1, 0, . . . , 0]T .

21. Find other local unknowns:

22. Exchange interface vector components yi
23. t := Xiyi,ext
24. rhs := rhs−

(

0
t

)

25.
(

ui

yi

)

:= (LiUi)
−1rhs.

A few explanations are in order. Lines 4–6 compute the initial residual for the
GMRES iteration with initial guess of zero and normalize this residual to obtain the
initial vector of the Arnoldi basis. According to the expression for the inverse of Ai

in (3.4), we have

A−1
i

(

fi
gi

)

=

(

∗
S−1
i (gi − EiB

−1
i fi)

)

,

which is identical to the expression in line 5 with Ai replaced by its approximation
LiUi. Comparing the bottom part of the right-hand side of the above expression
with the right-hand side of (3.16), it is seen that the vector Pr obtained in line 6 of
the algorithm is indeed an approximation to the local right-hand side of the Schur
complement system. Lines 8–10 correspond to the matrix-vector product with the
preconditioned Schur complement matrix, i.e., with the computation of the left-hand
side of (3.16).

3.5. Schur complements via approximate inverses. Equation (3.13) de-
scribes in general terms an approximate block LU factorization for the global system
(3.11). A particular factorization stems from approximating the Schur complement
matrix S using one of several approximate-inverse techniques described next.

Given an arbitrary matrix A, approximate-inverse preconditioners consist of find-
ing an approximation Q to its inverse, by solving approximately the optimization
problem [2]

min
Q∈S

‖I −AQ‖2
F ,

in which S is a certain set of n× n sparse matrices and ‖ · ‖F is the Frobenius norm.
This minimization problem can be decoupled into n minimization problems of the
form

min
mj

‖ej −Amj‖
2
2, j = 1, 2, . . . , n,

where ej and mj are the jth columns of the identity matrix and a matrix Q ∈
S, respectively. Note that each of the n columns can be computed independently.
Different strategies for selecting a nonzero structure of the approximate-inverse are
proposed in [7] and [13]. In [13] the initial sparsity pattern is taken to be diagonal
with further fill-in allowed depending on the improvement in the minimization. The
work [7] suggests controlling the sparsity of the approximate inverse by dropping
certain nonzero entries in the solution or search directions of a suitable iterative
method (e.g., GMRES). This iterative method solves the system Amj = ej such
that minmj

‖ej − Amj‖
2
2, for j = 1, 2, . . . , n. In this paper, the approximate-inverse

technique proposed in [7] and [6] is used.
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Consider the local matrix Ai blocked as

Ai =

(

Bi Fi

Ei Ci

)

and its block LU factorization similar to the one given by (3.12). The sparse appro-
ximate-inverse technique can be applied to approximate B−1

i Fi with a certain matrix
Yi (as it is done in [6]). The resulting matrix Yi is sparse and therefore

MSi
= Ci − EiYi(3.17)

is a sparse approximation to Si. A further approximation can be constructed using
an ILU factorization for the matrix MSi

.
As in the previous subsection, an approximation MS to the global Schur comple-

ment S can be obtained by approximately solving the reduced system (3.3), i.e., by
solving its approximated version

S̃iyi +
∑

j∈Ni

Eijyj = gi − EiB
−1
i fi,(3.18)

the right-hand side of which can be also computed approximately. System (3.18)
requires an approximation S̃i to the local Schur complement Si = Ci−EiB

−1
i Fi. The

matrix MSi
defined from the approximate-inverse technique outlined above can be

used for S̃i. Now that an approximation to the Schur complement matrix is available,
an induced global preconditioner M to the matrix A can be defined from considering
the global system (3.10), also written as (3.11). The Schur variables correspond to the
bottom part of the linear system. The global preconditioner M is given by the block
factorization (3.13) in which MS is the approximation to S obtained by iteratively

solving system (3.18).
Thus, the block forward-backward solves with the factors (3.13) will amount to

the following three-step procedure:
(1) Solve Bu = f ;
(2) Solve (iteratively) the system (3.18) to obtain y;
(3) Compute u := u−B−1Fy.

This three-step procedure translates into the following algorithm executed by Proces-
sor i.

Algorithm 3.2. Approximate-inverse Schur complement solution step
with GMRES.

1. Given: local right-hand side rhs = ( fi
gi

).

2. Solve Biui = fi approximately.
3. Calculate the local right-hand side g̃i := gi − Eiui.

4. Use GMRES to solve the distributed system MSi
yi + Xiyi,ext = g̃i.

5. Compute an approximation to t := B−1
i Fiyi.

6. Compute ui := ui − t.
Note that the steps in lines 2, 5, and 6 do not require any communication among

processors, since matrix-vector operations in these steps are performed with the local
vector components only. In contrast, the solution of the global Schur system invoked
in line 4, involves global matrix-vector multiplications with the “interface exchange
matrix” consisting of all the interface matrices Xi. The approximate solution of
Biui = fi (line 2) can be carried out by several steps of GMRES or by the forward-
backward solves with incomplete L and U factors of Bi (assuming that a factorization
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Bi ≈ LBi
UBi

is available). Then an approximation g̃i (line 3) to the local right-hand
side of system (3.18) is calculated. In line 5, there are several choices for approximating
t := B−1Fiyi. It is possible to solve the linear system Bit = Fiyi using GMRES as
in line 2. An alternative is to exploit the matrix Yi that approximates B−1

i Fi in
construction of MSi

(3.17).

4. Numerical experiments. In the experiments, we compared the performance
of the described preconditioners and the distributed Additive Schwarz preconditioning
on two-dimensional elliptic PDE problems and on several problems with the matrices
from the Harwell–Boeing [9] and Davis [8] collections.

Two parallel computing platforms have been used: an Intel Paragon (at Virginia
Tech) and a Cray T3E-900 (at the Minnesota Supercomputer Institute). These com-
puters have distributed-memory architectures. Thus, data sharing among processors
is performed by message passing (MPI) [20]. For the Intel Paragon and Cray T3E, the
interconnection networks are a two-dimensional mesh and a three-dimensional torus,
respectively. The physical interconnection of processors emulates a fully connected
network. The Intel Paragon was equipped with 100 compute nodes each having two
Intel i860XP processors (50 MHz)—one dedicated to applications and the other to
message passing—and 32 MB of memory. The Cray T3E-900 had 256 application
nodes, each equipped with a DEC Alpha processor (450 MHz) and 512 MB of mem-
ory.

A flexible variant of restarted GMRES (FGMRES) [23] has been used to solve
the original system since this accelerator permits a change in the preconditioning
operation at each step. This is useful when, for example, an iterative process is used
to precondition the input system. Thus, it is possible to use ILUT-preconditioned
GMRES with lfil fill-in elements. Recall that ILUT [24] is a form of incomplete LU
factorization with a dual threshold strategy for dropping fill-in elements.

For convenience, the following abbreviations will denote preconditioners and so-
lution techniques used in the numerical experiments:

SAPINV Distributed approximate block LU factorization: MSi
and

B−1
i Fi are approximated using the matrix Yi, constructed us-

ing the approximate-inverse technique described in [7];

SAPINVS Distributed approximate block LU factorization: MSi
is approxi-

mated using the approximate-inverse technique in [7], but B−1
i Fi

is applied using one matrix-vector multiplication followed by a
solve with Bi;

SLU Distributed global system preconditioning defined via an approx-
imate solve with MS , in which Si ≈ LSi

USi
;

BJ Approximate additive Schwarz, where ILUT-preconditioned
GMRES(k) is used to precondition each submatrix assigned to
a processor;

SI “Pure” Schur complement iteration as described in section 3.2.

4.1. Elliptic problems. Consider the elliptic partial differential equation

∆u = f(4.1)

on rectangular regions with Dirichlet boundary conditions, discretized with a five-
point centered finite-difference scheme.



1350 YOUSEF SAAD AND MARIA SOSONKINA

Fig. 4.1. Domain decomposition and assignment of a 12 × 9 mesh to a 3 × 3 virtual processor
grid.

If the number of points in the x and y directions (respectively) are nx and ny,
excluding the boundary points, then the mesh is mapped to a virtual px × py grid
of processors, such that a subrectangle of nx/px points in the x direction and ny/py
points in the y direction is mapped to a processor. In fact, each of the subproblems
associated with these subrectangles is generated in parallel. Figure 4.1 shows a domain
decomposition of a mesh and its mapping onto a virtual processor grid.

A comparison of timing results and iteration numbers for a global 360×360 mesh
mapped to (virtual) square processor grids of increasing size is given in Figure 4.2.
All the reported timing results are obtained by measuring the wall-clock time of a
linear system solution excluding local ILU factorization and approximate inverse con-
structions. (In Figure 4.2, we omit the solution time for the BJ preconditioning on
four processors, which is 95.43 seconds.) The residual norm reduction by 10−6 was
achieved by flexible GMRES(10). In preconditioning, ILUT with lfil = 15 and the
dropping tolerance 10−4 was used as a choice of an incomplete LU factorization. GM-
RES was used in the application of BJ and SLU, such that the GMRES convergence
was detected at a relative tolerance of 10−2 or a maximum of five iterations. For
SAPINV, forward-backward solves with Bi ≈ LBi

UBi
were performed in Line 2 of

Algorithm 3.2.

Since the problem (mesh) size is fixed, with an increase in number of processors
the subproblems become smaller and the overall time decreases. Both preconditioners
based on Schur complement techniques are less expensive than the Additive Schwarz
preconditioning. This is especially noticeable for small numbers of processors.

Keeping subproblem sizes fixed while increasing the number of processors increases
the overall size of the problem making it harder to solve and thus increasing the
solution time. In ideal situations of perfectly scalable algorithms, the execution time
should remain constant. Timing results for fixed local subproblem sizes of 15 × 15,
30×30, 50×50, and 70×70 are presented in Figure 4.3. (Premature termination of the
curves for SI indicates nonconvergence in 300 iterations.) The growth in the solution
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Fig. 4.2. Solution times (wall-clock) and iteration counts for solving a 360 × 360 discretized
Laplacean problem with 3 different preconditioners using flexible GMRES(10).

time as the number of processors increases is rather pronounced for the “pure” Schur
complement iteration and additive Schwarz, whereas it is rather moderate for the
Schur complement-based preconditioners.

The additive Schwarz preconditioning performs at its best when the partitioning
includes some domain overlapping. We compared the proposed Schur complement-
based preconditioning with the overlapping additive Schwarz algorithm. We used a
version in which the local overlapping data are exchanged, meaning that overlapping
data that belong to a given processor are replaced by the external version (see sec-
tion 2.2). In cases of more than two overlapping domains, data is exchanged with only
one of the overlapping neighboring domains. Figure 4.4 shows the wall-clock timing
results and iteration numbers for the one- and two-level overlappings used in both
BJ and SLU preconditionings. Note that the two-level overlapping refers to the case
when two level sets are added to an initial nonoverlapping partitioning (neighbors of
the interface points and the neighbors of these neighbors). As indicated in Figure 4.4,
BJ benefits much more than SLU from overlapping. In fact, if the execution time is
the main criterion used, then the overlapping version of SLU is more expensive than
the nonoverlapping one. However, Schur LU retains its superior performance over
block-Jacobi. At this point it is interesting to note that the Schur-LU preconditioner
can be viewed as a two-level technique. At the second level, a “coarse” (global) prob-
lem consisting of all the interface variables is solved approximately. A prolongation
to the “fine” problem is then obtained and the process is repeated until convergence,
with the outer loop accelerated by a flexible Krylov accelerator. Therefore, it is not
too surprising that the number of outer steps does not vary too much as the number
of processors increases.

4.2. General problems. Table 4.1 describes three test problems from the
Harwell–Boeing and Davis collections. The column Pattern specifies whether a given
problem has a structurally symmetric matrix. In all three test problems, the matrix
rows followed by the columns were scaled by 2-norm. Also, in the partitioning of a
problem the one-level overlapping with data replacing was used (see section 2.2).

Tables 4.2–4.4 show iteration numbers required by FGMRES(20) with SAPINV,
SAPINVS, SLU, and BJ until convergence on different numbers of processors. An
asterisk indicates nonconvergence. In the preconditioning phase, approximate solves
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Fig. 4.3. Solution times (wall-clock) for a Laplacean problem with various local subproblem
sizes using flexible GMRES(10) with 3 different preconditioners (BJ, SAPINV, SLU) and the Schur
complement iteration (SI).

Table 4.1
Description of test problems.

Name n nz Pattern Discipline
af23560 23560 484256 Symm Airfoil, eigenvalue

calculation
raefsky1 3242 22316 Unsymm Incompressible flow

in pressure driven pipe
sherman3 5005 20033 Symm Oil reservoir modeling

in each processor were carried out by GMRES to reduce the residual norm by 10−3

but no more than five steps were allowed. As a choice of ILU factorization, ILUT with
lfil fill-in elements (shown in the column lfil) was used in the experiments here.
lfil corresponds also to the number of elements in a matrix column created by the
approximate-inverse technique. In general, it is hard to compare the methods since
the number of fill-in elements in each of the resulting preconditioners is different. In
other words, for SAPINV and SAPINVS, lfil specifies the number of nonzeros in
the blocks of preconditioning; for SLU, lfil is the total number of nonzeros in the
preconditioning, therefore, the number of nonzeros in a given approximation S is not
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Fig. 4.4. Times and iteration counts for solving a Laplacean problem with 70 × 70 local sub-
problem size using BJ and SLU preconditioners with one- and two-level overlappings—BJ(1), BJ(2),
SLU(1), and SLU(2), respectively.

Table 4.2
Number of FGMRES(20) iterations for the RAEFSKY1 problem.

Name Precon lfil 4 8 16 24 36 40
raefsky1 SAPINV 10 14 13 10 11 8 8

20 12 11 9 9 8 8
SAPINVS 10 16 13 10 11 8 8

20 13 11 9 9 8 8
SLU 10 215 197 198 194 166 171

20 48 50 40 42 41 41
BJ 10 85 171 173 273 252 263

20 82 170 173 271 259 259

known exactly.
For a given problem, iteration counts for the SAPINV and SAPINVS suggest a

clear trend of achieving convergence in fewer iterations with increasing number of
processors, which means that a high degree of parallelism of these preconditioners
does not impede convergence, and may even enhance it significantly (cf. rows 1–4 of
Table 4.2). The main explanation for this is the fact that the approximations to the
local and global Schur complement matrices, from which the global preconditioner
M is derived, actually improve as the processor numbers become larger since these
matrices become smaller. Furthermore, SAPINV, SAPINVS, and SLU do not suffer
from the information loss as happens with BJ (since BJ disregards the local matrix
entries corresponding to the external interface vector components). Note that the
effectiveness of BJ degrades with increasing number of processors (cf. Subsection 4.1).
Comparison of SAPINV and SAPINVS (for RAEFSKY1 and SHERMAN3) confirms
the conclusions of [6] that using Yi to approximate B−1

i Fi (Line 5 in Algorithm 3.2) is
more efficient than applying B−1

i Fi directly, which is also computationally expensive.
For general distributed matrices, this is especially true, since iterative solves with Bi

may be very inaccurate.
In the experiments, sparse approximations of Yi appear to be quite accurate

(usually reducing the Frobenius norm to 10−2), which could be attributed to the small
dimensions of the matrices used in approximations. This reduction in the Frobenius
norm was attained in 10 iterations of the Minimal Residual (MR) method (see, e.g.,
[25]). Smaller numbers of iterations were also tested. Their effect on the overall
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Table 4.3
Number of FGMRES(20) iterations for the AF23560 problem.

Name Precon lfil 16 24 32 40 56 64 80 96
af23560 SAPINV 20 32 36 27 29 73 35 71 61

30 32 35 23 29 46 60 33 52
SAPINVS 20 32 35 24 29 55 35 37 59

30 32 34 23 28 43 45 23 35
SLU 20 81 105 94 88 90 76 85 71

30 38 34 37 39 38 39 38 35
BJ 20 37 153 53 60 77 80 95 *

30 36 41 53 57 81 87 97 115

Table 4.4
Number of FGMRES(20) iterations for the SHERMAN3 problem.

Name Precon lfil 16 24 32 40 48 56 60
sherman3 SAPINV 10 52 42 21 17 31 21 20

20 54 40 18 17 29 20 19
SAPINVS 10 54 48 21 18 33 21 21

20 55 51 19 16 30 19 19
SLU 10 34 32 16 20 20 23 17

20 21 23 12 16 15 18 13
BJ 10 158 155 72 208 110 122 84

20 163 155 72 206 111 120 85

solution process amounted to on average one extra iteration of FGMRES(20) for the
problems considered here.

We point out that a few other experiments using methods described in this paper
as well as related methods are reported in [28].

5. Conclusion. In this paper, several preconditioning techniques for distributed
linear systems are derived from approximate solutions with the related Schur com-
plement system. The preconditioners are built upon the already available distributed
data structure for the original matrix, and an approximation to the global Schur com-
plement is never formed explicitly. Thus no communication overhead is incurred to
construct a preconditioner, making the preprocessing phase simple and highly paral-
lel. The preconditioning operations utilize the communication structure precomputed
for the original matrix.

The preconditioning to the global matrix A is defined in terms of a block LU
factorization which involves a solve with the global Schur complement system at each
preconditioning step. This system is in turn solved approximately with a few steps of
GMRES exploiting approximations to the local Schur complement for precondition-
ing. Two different techniques, incomplete LU factorization and approximate-inverse,
are used to approximate these local Schur complements. Distributed preconditioners
constructed and applied in this manner allow much flexibility in specifying approxi-
mations to the local Schur complements and local system solves and in defining the
global induced Block-LU preconditioner to the original matrix.

With an increasing number of processors, a Krylov subspace method, such as
FGMRES [23], preconditioned by the proposed techniques exhibits a very moderate
growth in the execution time for scaled problem sizes. Experiments show that the pro-
posed distributed preconditioners based on Schur complement techniques are superior
to the commonly used Additive Schwarz preconditioning. In addition, this advantage
comes at no additional cost in code-complexity or memory usage, since the same data
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structures as those for additive Schwarz preconditioners can be used.
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